一代测序和二代测序区别比较(宏基因组测序和全基因组测序)

一代测序和二代测序区别比较(宏基因组测序和全基因组测序)

摘要:从1977年第一代DNA测序技术(Sanger法),发展至今三十多年时间,测序技术已取得了相当大的发展,从第一代到第三代乃至第四代,测序读长从长到短,再从短到长。虽然就当前形势看来第二代短读长测序技术在全球测序市场上仍然占有着绝对的优势位置,但第三和第四代测序技术也已在这一两年的时间中快速发展着。测序技术的每一次变革,也都对基因组研究,疾病医疗研究,药物研发,育种等领域产生巨大的推动作用。在这里我主要对当前的测序技术以及它们的测序原理做一个简单的小结。

图2:Sanger法测序原理第二代测序技术总的说来,第一代测序技术的主要特点是测序读长可达1000bp,准确性高达99.999%,但其测序成本高,通量低等方面的缺点,严重影响了其真正大规模的应用。因而第一代测序技术并不是最理想的测序方法。经过不断的技术开发和改进,以Roche公司的454技术、illumina公司的Solexa,Hiseq技术和ABI公司的Solid技术为标记的第二代测序技术诞生了。第二代测序技术大大降低了测序成本的同时,还大幅提高了测序速度,并且保持了高准确性,以前完成一个人类基因组的测序需要3年时间,而使用二代测序技术则仅仅需要1周,但在序列读长方面比起第一代测序技术则要短很多。表1和图3对第一代和第二代测序技术各自的特点以及测序成本作了一个简单的比较,以下我将对这三种主要的第二代测序技术的主要原理和特点作一个简单的介绍。

图4. Illumina测序流程2.Roche 454Roche 454测序系统是第一个商业化运营二代测序技术的平台。它的主要测序原理是(图5 abc)2:(1)DNA文库制备454测序系统的文件构建方式和illumina的不同,它是利用喷雾法将待测DNA打断成300-800bp长的小片段,并在片段两端加上不同的接头,或将待测DNA变性后用杂交引物进行PCR扩增,连接载体,构建单链DNA文库(图5a)。(2)Emulsion PCR (乳液PCR,其实是一个注水到油的独特过程)454当然DNA扩增过程也和illumina的截然不同,它将这些单链DNA结合在水油包被的直径约28um的磁珠上,并在其上面孵育、退火。乳液PCR最大的特点是可以形成数目庞大的独立反应空间以进行DNA扩增。其关键技术是“注水到油”(水包油),基本过程是在PCR反应前,将包含PCR所有反应成分的水溶液注入到高速旋转的矿物油表面,水溶液瞬间形成无数个被矿物油包裹的小水滴。这些小水滴就构成了独立的PCR反应空间。理想状态下,每个小水滴只含一个DNA模板和一个磁珠。这些被小水滴包被的磁珠表面含有与接头互补的DNA序列,因此这些单链DNA序列能够特异地结合在磁珠上。同时孵育体系中含有PCR反应试剂,所以保证了每个与磁珠结合的小片段都能独立进行PCR扩增,并且扩增产物仍可以结合到磁珠上。当反应完成后,可以破坏孵育体系并将带有DNA的磁珠富集下来。进过扩增,每个小片段都将被扩增约100万倍,从而达到下一步测序所要求的DNA量。(3)焦磷酸测序测序前需要先用一种聚合酶和单链结合蛋白处理带有DNA的磁珠,接着将磁珠放在一种PTP平板上。这种平板上特制有许多直径约为44um的小孔,每个小孔仅能容纳一个磁珠,通过这种方法来固定每个磁珠的位置,以便检测接下来的测序反应过程。测序方法采用焦磷酸测序法,将一种比PTP板上小孔直径更小的磁珠放入小孔中,启动测序反应。测序反应以磁珠上大量扩增出的单链DNA为模板,每次反应加入一种dNTP进行合成反应。如果dNTP能与待测序列配对,则会在合成后释放焦磷酸基团。释放的焦磷酸基团会与反应体系中的ATP硫酸化学酶反应生成ATP。生成的ATP和荧光素酶共同氧化使测序反应中的荧光素分子并发出荧光,同时由PTP板另一侧的CCD照相机记录,最后通过计算机进行光信号处理而获得最终的测序结果。由于每一种dNTP在反应中产生的荧光颜色不同,因此可以根据荧光的颜色来判断被测分子的序列。反应结束后,游离的dNTP会在双磷酸酶的作用下降解ATP,从而导致荧光淬灭,以便使测序反应进入下一个循环。由于454测序技术中,每个测序反应都在PTP板上独立的小孔中进行,因而能大大降低相互间的干扰和测序偏差。454技术最大的优势在于其能获得较长的测序读长,当前454技术的平均读长可达400bp,并且454技术和illumina的Solexa和Hiseq技术不同,它最主要的一个缺点是无法准确测量同聚物的长度,如当序列中存在类似于PolyA的情况时,测序反应会一次加入多个T,而所加入的T的个数只能通过荧光强度推测获得,这就有可能导致结果不准确。也正是由于这一原因,454技术会在测序过程中引入插入和缺失的测序错误。

图5. Roche 454测序流程3. Solid技术Solid测序技术是ABI公司于2007年开始投入用于商业测序应用的仪器。它基于连接酶法,即利用DNA连接酶在连接过程之中测序(图6)。它的原理是:

图6-a. Solid测序技术(1)DNA文库构建片段打断并在片段两端加上测序接头,连接载体,构建单链DNA文库。(2)Emulsion PCRSolid的PCR过程也和454的方法类似,同样采用小水滴emulsion PCR,但这些微珠比起454系统来说则要小得多,只有1um。在扩增的同时对扩增产物的3’端进行修饰,这是为下一步的测序过程作的准备。3’修饰的微珠会被沉积在一块玻片上。在微珠上样的过程中,沉积小室将每张玻片分成1个、4个或8个测序区域(图6-a)。Solid系统最大的优点就是每张玻片能容纳比454更高密度的微珠,在同一系统中轻松实现更高的通量。(3)连接酶测序这一步是Solid测序的独特之处。它并没有采用以前测序时所常用的DNA聚合酶,而是采用了连接酶。Solid连接反应的底物是8碱基单链荧光探针混合物,这里将其简单表示为:3’-XXnnnzzz-5’。连接反应中,这些探针按照碱基互补规则与单链DNA模板链配对。探针的5’末端分别标记了CY5、Texas Red、CY3、6-FAM这4种颜色的荧光染料(图6-a)。这个8碱基单链荧光探针中,第1和第2位碱基(XX)上的碱基是确定的,并根据种类的不同在6-8位(zzz)上加上了不同的荧光标记。这是Solid的独特测序法,两个碱基确定一个荧光信号,相当于一次能决定两个碱基。这种测序方法也称之为两碱基测序法。当荧光探针能够与DNA模板链配对而连接上时,就会发出代表第1,2位碱基的荧光信号,图6-a和图6-b中的比色版所表示的是第1,2位碱基的不同组合与荧光颜色的关系。在记录下荧光信号后,通过化学方法在第5和第6位碱基之间进行切割,这样就能移除荧光信号,以便进行下一个位置的测序。不过值得注意的是,通过这种测序方法,每次测序的位置都相差5位。即第一次是第1、2位,第二次是第6、7位……在测到末尾后,要将新合成的链变性,洗脱。接着用引物n-1进行第二轮测序。引物n-1与引物n的区别是,二者在与接头配对的位置上相差一个碱基(图6-a. 8)。也即是,通过引物n-1在引物n的基础上将测序位置往3’端移动一个碱基位置,因而就能测定第0、1位和第5、6位……第二轮测序完成,依此类推,直至第五轮测序,最终可以完成所有位置的碱基测序,并且每个位置的碱基均被检测了两次。该技术的读长在2×50bp,后续序列拼接同样比较复杂。由于双次检测,这一技术的原始测序准确性高达99.94%,而15x覆盖率时的准确性更是达到了99.999%,应该说是目前第二代测序技术中准确性最高的了。但在荧光解码阶段,鉴于其是双碱基确定一个荧光信号,因而一旦发生错误就容易产生连锁的解码错误。

图6-b. Solid测序技术第三代测序技术测序技术在近两三年中又有新的里程碑。以PacBio公司的SMRT和Oxford Nanopore Technologies纳米孔单分子测序技术,被称之为第三代测序技术。与前两代相比,他们最大的特点就是单分子测序,测序过程无需进行PCR扩增。其中PacBio SMRT技术其实也应用了边合成边测序的思想5,并以SMRT芯片为测序载体。基本原理是:DNA聚合酶和模板结合,4色荧光标记 4 种碱基(即是dNTP),在碱基配对阶段,不同碱基的加入,会发出不同光,根据光的波长与峰值可判断进入的碱基类型。同时这个 DNA 聚合酶是实现超长读长的关键之一,读长主要跟酶的活性保持有关,它主要受激光对其造成的损伤所影响。PacBio SMRT技术的一个关键是怎样将反应信号与周围游离碱基的强大荧光背景区别出来。他们利用的是ZMW(零模波导孔)原理:如同微波炉壁上可看到的很多密集小孔。小孔直径有考究,如果直径大于微波波长,能量就会在衍射效应的作用下穿透面板而泄露出来,从而与周围小孔相互干扰。如果孔径小于波长,能量不会辐射到周围,而是保持直线状态(光衍射的原理),从而可起保护作用。同理,在一个反应管(SMRTCell:单分子实时反应孔)中有许多这样的圆形纳米小孔, 即 ZMW(零模波导孔),外径 100多纳米,比检测激光波长小(数百纳米),激光从底部打上去后不能穿透小孔进入上方溶液区,能量被限制在一个小范围(体积20X 10-21 L)里,正好足够覆盖需要检测的部分,使得信号仅来自这个小反应区域,孔外过多游离核苷酸单体依然留在黑暗中,从而实现将背景降到最低。另外,可以通过检测相邻两个碱基之间的测序时间,来检测一些碱基修饰情况,既如果碱基存在修饰,则通过聚合酶时的速度会减慢,相邻两峰之间的距离增大,可以通过这个来之间检测甲基化等信息(图7)。SMRT技术的测序速度很快,每秒约10个dNTP。但是,同时其测序错误率比较高(这几乎是目前单分子测序技术的通病),达到15%,但好在它的出错是随机的,并不会像第二代测序技术那样存在测序错误的偏向,因而可以通过多次测序来进行有效的纠错。

图8. 纳米孔测序其他测序技术目前还有一种基于半导体芯片的新一代革命性测序技术——Ion Torrent6。该技术使用了一种布满小孔的高密度半导体芯片, 一个小孔就是一个测序反应池。当DNA聚合酶把核苷酸聚合到延伸中的DNA链上时,会释放出一个氢离子,反应池中的PH发生改变,位于池下的离子感受器感受到H 离子信号,H 离子信号再直接转化为数字信号,从而读出DNA序列(图9)。这一技术的发明人同时也是454测序技术的发明人之一——Jonathan Rothberg,它的文库和样本制备跟454技术很像,甚至可以说就是454的翻版,只是测序过程中不是通过检测焦磷酸荧光显色,而是通过检测H 信号的变化来获得序列碱基信息。Ion Torrent相比于其他测序技术来说,不需要昂贵的物理成像等设备,因此,成本相对来说会低,体积也会比较小,同时操作也要更为简单,速度也相当快速,除了2天文库制作时间,整个上机测序可在2-3.5小时内完成,不过整个芯片的通量并不高,目前是10G左右,但非常适合小基因组和外显子验证的测序。

图9. Ion Torrent小结以上,对各代测序技术的原理做了简要的阐述,这三代测序技术的特点比较汇总在以下表1和表2中。其中测序成本,读长和通量是评估该测序技术先进与否的三个重要指标。第一代和第二代测序技术除了通量和成本上的差异之外,其测序核心原理(除Solid是边连接边测序之外)都是基于边合成边测序的思想。第二代测序技术的优点是成本较之一代大大下降,通量大大提升,但缺点是所引入PCR过程会在一定程度上增加测序的错误率,并且具有系统偏向性,同时读长也比较短。第三代测序技术是为了解决第二代所存在的缺点而开发的,它的根本特点是单分子测序,不需要任何PCR的过程,这是为了能有效避免因PCR偏向性而导致的系统错误,同时提高读长,并要保持二代技术的高通量,低成本的优点。

表1:测序技术的比较

第X代

公司

平台名称

测序方法

检测方法

大约读长(碱基数)

优点

相对局限性

第一代

ABI/生命技术公司

3130xL-3730

xL

桑格-毛细管电泳测序法

荧光/光学

600-1000

高读长,准确度一次性达标率高,能很好处理重复序列和多聚序列

通量低;样品制备成本高,使之难以做大量的平行测序

第一代

贝克曼

GeXP遗传分析系统

桑格-毛细管电泳测序法

荧光/光学

600-1000

高读长,准确度一次性达标率高,能很好处理重复序列和多聚序列;易小型化

通量低;单个样品的制备成本相对较高

第二代

Roche/454

基因组测序仪FLX系统

焦磷酸测序法

光学

230-400

在第二代中最高读长;比第一代的测序通量大

样品制备较难;难于处理重复和同种碱基多聚区域;试剂冲洗带来错误累积;仪器昂贵

第二代

Illumina

HiSeq2000,HiSeq2500/MiSeq

可逆链终止物和合成测序法

荧光/光学

2×150

很高测序通量

仪器昂贵;用于数据删节和分析的费用很高

第二代

ABI/Solid

5500xlSolid系统

连接测序法

荧光/光学

25-35

很高测序通量;在广为接受的几种第二代平台中,所要拼接出人类基因组的试剂成本最低

测序运行时间长;读长短,造成成本高,数据分析困难和基因组拼接困难;仪器昂贵

第二代

赫利克斯

Heliscope

单分子合成测序法

荧光/光学

25-30

高通量;在第二代中属于单分子性质的测序技术

读长短,推高了测序成本,降低了基因组拼接的质量;仪器非常昂贵

第三代

太平洋生物科学公司

PacBio RS

实时单分子DNA测序

荧光/光学

~1000

高平均读长,比第一代的测序时间降低;不需要扩增;最长单个读长接近3000碱基

并不能高效地将DNA聚合酶加到测序阵列中;准确性一次性达标的机会低

(81-

83

%);DNA聚合酶在阵列中降解;总体上每个碱基测序成本高(仪器昂贵);

第三代

全基因组学公司

GeXP遗传分析系统

复合探针锚杂交和连接技术

荧光/光学

10

在第三代中通量最高;在所有测序技术中,用于拼接一个人基因组的试剂成本最低;每个测序步骤独立,使错误的累积变得最低

低读长;模板制备妨碍长重复序列区域测序;样品制备费事;尚无商业化供应的仪器

第三代

Ion Torrent/生命技术公司

个人基因组测序仪(PGM)

合成测序法

以离子敏感场效应晶体管检测pH值变化

100-200

对核酸碱基的掺入可直接测定;在自然条件下进行DNA合成(不需要使用修饰过的碱基)

一步步的洗脱过程可导致错误累积;阅读高重复和同种多聚序列时有潜在困难;

第三代

牛津纳米孔公司

gridION

纳米孔外切酶测序

电流

尚未定量

有潜力达到高读长;可以成本生产纳米孔;无需荧光标记或光学手段

切断的核苷酸可能被读错方向;难于生产出带多重平行孔的装置

表2:主流测序机器的成本测序比较

以下图10展示了当前全球测序仪的分布情况。图中的几个热点区主要分布在中国的深圳(主要是华大),南欧,西欧和美国。

1.全球龙头Illumina,技术的飞跃望其项背Illumina产品多种多样,具有不同的应用特点,适应不同需求的使用机构。在二代测序仪中,Illumina的产品带动测序成本的下降,Hiseq X Ten率先将人类基因组测序成本下降至1000美元以下。在近十年来的测序市场发展中,增速之所以在IVD的各个行业中排名靠前,科研机构和第三方测序服务中心是主要的推动力,这两类机构对于测序成本较为敏感,因此在各大测序平台中,Illumina的产品也容易受到青睐。平台采用边合成边测序(SBS)技术原理,这套基于DNA簇(DNA cluster)、桥式PCR和可逆阻断等核心技术的系统具有高通量、低错误率、低成本、应用范围广等优点。

图1.Illumina测序仪参数对比MiSeq系列在Illumina公司内部定位于快速简约,适合靶向和小型基因组测序的一类仪器。MiSeq测序仪以其在单次运行测序读长高达2×300 bp为特色,实现了小型基因组的组装或目标变异的准确检测。MiSeq系列在微生物多样性分析、宏基因组测序、转录组de novo测序、微生物基因组测序、小RNA测序、ChIP-Seq以及外显子测序等方面已成为行业最准确且最易用的台式测序仪。此外,MiSeq Dx系统是首个经过FDA批准的体外诊断(IVD)测试平台;MiSeq FGx 是专为法医基因组分析应用而设计,供研究、法医和亲子鉴定使用。MiniSeq是桌面式测序仪系列产品的一个重要补充,相较于MiSeq而言,MiniSeq在技术上并未有大的提升,只是在通量设计上更为小巧灵活。研究者可根据自己的项目进程进行上机掌控,对于实验室规模相对较小,通量较小的单位更为适合。在应用领域方面,癌症芯片测序,肿瘤靶向分析方向优势更为突出。NextSeq 500于2014年隆重推出,测序系统将高通量、灵活性、准确性以及所有成本支出进行了完美结合。而NextSeq 550在此基础上,对光学成像模块及试剂版本进行升级,使检测精度及仪器稳定性大幅提升;在数据分析上,可实现与互联网无物理连接,下机数据院端本地化单机分析。HiSeq系列测序仪问世以来,以通量高,产量大,生产规模著称,能够快速、经济的进行大规模平行测序,在大型全基因组测序,全转录组,全外显子组测序,靶向基因测序方面优势明显。HiSeq 3000/4000系统则基于成熟的HiSeq 2500系统,采用创新的有序流动槽技术最大限度提高效率,3.5天内可完成12个基因组、100个转录组或180个外显子组测序。HiSeq 3000/HiSeq 4000测序系统为生产级测序能力设立了一个全新的标准。HiSeq X Ten系列是由一套共10台超高通量的HiSeq X仪器组成,每年能带来超过18,000个人类基因组,而每个基因组的价格约为1000美元,让癌症和复杂疾病的研究达到新的水平。NovaSeq系列测序仪旨在将基因组测序的价格进一步降至100美元。全新的NovaSeq系列测序系统,突破技术革新,具有可扩展的通量、灵活简便的配置和简化的操作流程,允许以更大的深度来发现罕见的遗传变异,为大规模发现复杂疾病变异打开了全新的市场。2.ThermoFisher收购测序巨头试水基因检测2013年,Thermo Fisher宣布以136亿美元的高价收购Life Technologies,成功切入测序仪领域,轰动一时。当时Life拥有Solid测序平台、Ion PGM和Ion Proton,2012年销售额达38亿美元。Ion Torrent系列产品尽管数据产出低,但是具有测序时间短的特点,适用于需要快速检测但数据量要求低的用户。近年来部分医院倾向于独立建设基因检测实验室,医院的需求是快速检测,无需产出大数据量,Ion Torrent系列可以满足这类型机构的需求。2015年,Thermo Fisher推出Ion S5和S5 xl,数据和读长相比于Proton进一步提升,并且结合了分析软件于机器中,下机数据直接进入信息分析流程,分析时间可短至1小时完成,极大的简化了操作人员的专业性操作。平台采用的为半导体测序原理,在半导体芯片孔中的微球上固定DNA链,随后依次掺入ACGT。每加入一个碱基释放出来的H离子,反应池中的PH发生改变,位于池下的离子感受器就会感受到信号,把化学信号直接转化为数字信号,从而读出DNA序列。Ion Torrent测序平台其在非碱基多聚体(non-homopolymer)的测序上正确率与其它NGS平台相差无几,而对于连续碱基的检测还不够完善,在检测同一碱基连续出现时的数量可能会有所误差。

图2.ThermoFisher测序仪参数对比3.诊断界巨头罗氏,以退为进布局二代后测序产品Roche 454前身是454 Life Sciences公司,于2007年被Roche收购,同年推出454 GS FLX。尽管454 GS FLX每次运行最大输出仅为450Mb,但是其他公司产品也仍处在发展当中,与Illumina、ABI站在同一起跑线。在随后的几年内,Illumina和ABI(2008年合并为Life Technologies)产品推陈出新,最大输出上不断突破,然而Roche的测序仪发展进程缓慢。2011年推出的454 GS FLX 每次运行最大输出仅为700Mb,而同年Illumina推出的小输出测序仪也能达到15Gb。技术上无法满足需求,Roche产品迅速被市场淘汰,2013年,Roche宣布关闭454测序业务,454传奇在此终结,然而罗氏并未停止在测序领域的布局,通过一系列并购和投资,目前罗氏已经在三代测序产品持续布局,成为全球最大分子诊断公司。

图3.Roche454测序仪参数对比

【更多精彩,尽在科邦实验室】

做实验,就找科邦实验室www.kbsys.cn

科邦实验室专注实验室科研服务,以仪器设备耗材采购、定制加工、系统集成为核心。技术支持团队来自中国科学院、清华大学、南开大学、南京航空航天大学等科研型高校,且均为硕士及以上学历,懂实验,知需求。我们致力于通过优质的产品与服务,为科研学者提供最专业、最具性价比、最高效的一站式服务。科邦实验室母公司(泛米科技)及各投资机构已联合发起成立科邦实验室技术产品化投资平台;对于高价值实验室技术,平台投入启动资金。以需求导向助力项目明确产品定位;以供应链整合实现技术产品化;以市场反馈推动产品迭代。

欢迎技术专家共创合作!

发表评论

登录后才能评论