无理数和有理数。为什么要区别?
1.1、性质不同:有理数是整数和分数的集合,整数也可看做是分母为一的分数。无理数也称为无限不循环小数,不能写作两整数之比。
2、特点不同:有理数和无理数都能写成小数形式,但是有理数可以写为有限小数和无限循环小数,而无理数只能写为无限不循环小数。有理数可以写为整数之比,而无理数不能。
3、表达方式不同:能够用分数表达的数就是有理数,不能用分数表达的数就是无理数。
扩展资料:
注意事项:
运用加法交换律,在交换各数的位置时要连同它们前面的符号一起交换,千万不要把符号漏掉。
应用加法结合律时,应充分考虑同号加数结合、同分母或便于通分的加数结合、凑整的加数结合、互为相反数的加数结合等情形,从而选择适当的方法,使运算简便。
若分数、小数混在一块运算时,可以统一成分数或小数再运算。
如果有大括号和小括号应当先进行小括号里的运算,再进行大括号里的运算。
2.区别如下:
1.性质不同有理数是“数与代数”领域中的重要内容之一,在现实生活中有广泛的应用,是继续学习实数、代数式、方程、不等式、直角坐标系、函数、统计等数学内容以及相关学科知识的基础。无理数,也称为无限不循环小数,不能写作两整数之比。若将它写成小数形式,小数点之后的数字有无限多个,并且不会循环。
2.范围不同有理数集是整数集的扩张。在有理数集内,加法、减法、乘法、除法(除数不为零)4种运算通行无阻。无理数是指实数范围内不能表示成两个整数之比的数。简单的说,无理数就是10进制下的无限不循环小数。
3.结构不同有理数为整数(正整数、0、负整数)和分数的统称。无理数是所有不是有理数字的实数,后者是由整数的比率(或分数)构成的数字。
零是无理数吗?
1.零不是无理数。
这是因为,所谓无理数,是指无限不循环小数。
所谓有理数,是指可以表示为两个整数之商的形式的数。
很显然,零可以表示为两个整数之商形式,比如可以表示为0/1,因此0不是无理数,他是一个有理数。
对于实数的简单分类,应该有一个比较清楚的认识。