我们知道 Python 是一种动态语言,在声明一个变量时我们不需要显式地声明它的类型,例如下面的例子:a=2print(‘1 a=’,1 a)
运行结果:
1 a=3
这里我们首先声明了一个变量 a,并将其赋值为了 2,然后将最后的结果打印出来,程序输出来了正确的结果。但在这个过程中,我们没有声明它到底是什么类型。
但如果这时候我们将 a 变成一个字符串类型,结果会是怎样的呢?改写如下:
a=’2’print(‘1 a=’,1 a)
运行结果:
TypeError:unsupportedoperandtype(s)for :’int’and’str’
直接报错了,错误原因是我们进行了字符串类型的变量和数值类型变量的加和,两种数据类型不同,是无法进行相加的。
如果我们将上面的语句改写成一个方法定义:
defadd(a):returna 1
这里定义了一个方法,传入一个参数,然后将其加 1 并返回。
如果这时候如果用下面的方式调用,传入的参数是一个数值类型:
add(2)
则可以正常输出结果 3。但如果我们传入的参数并不是我们期望的类型,比如传入一个字符类型,那么就会同样报刚才类似的错误。
但又由于 Python 的特性,很多情况下我们并不用去声明它的类型,因此从方法定义上面来看,我们实际上是不知道一个方法的参数到底应该传入什么类型的。
这样其实就造成了很多不方便的地方,在某些情况下一些复杂的方法,如果不借助于一些额外的说明,我们是不知道参数到底是什么类型的。
因此,Python 中的类型注解就显得比较重要了。
类型注解
在 Python 3.5 中,Python PEP 484 引入了类型注解(type hints),在 Python 3.6 中,PEP 526 又进一步引入了变量注解(Variable Annotations),所以上面的代码我们改写成如下写法:
a:int=2print(‘5 a=’,5 a)defadd(a:int)->int:returna 1
具体的语法是可以归纳为两点:
在声明变量时,变量的后面可以加一个冒号,后面再写上变量的类型,如 int、list 等等。
在声明方法返回值的时候,可以在方法的后面加一个箭头,后面加上返回值的类型,如 int、list 等等。
在 PEP 8 中,具体的格式是这样规定的:
在声明变量类型时,变量后方紧跟一个冒号,冒号后面跟一个空格,再跟上变量的类型。
在声明方法返回值的时候,箭头左边是方法定义,箭头右边是返回值的类型,箭头左右两边都要留有空格。
有了这样的声明,以后我们如果看到这个方法的定义,我们就知道传入的参数类型了,如调用 add 方法的时候,我们就知道传入的需要是一个数值类型的变量,而不是字符串类型,非常直观。
但值得注意的是,这种类型和变量注解实际上只是一种类型提示,对运行实际上是没有影响的,比如调用 add 方法的时候,我们传入的不是 int 类型,而是一个 float 类型,它也不会报错,也不会对参数进行类型转换,如:
add(1.5)
我们传入的是一个 float 类型的数值 1.5,看下运行结果:
2.5
可以看到,运行结果正常输出,而且 1.5 并没有经过强制类型转换变成 1,否则结果会变成 2。
因此,类型和变量注解只是提供了一种提示,对于运行实际上没有任何影响。
不过有了类型注解,一些 IDE 是可以识别出来并提示的,比如 PyCharm 就可以识别出来在调用某个方法的时候参数类型不一致,会提示 WARNING。
比如上面的调用,如果在 PyCharm 中,就会有如下提示内容:
Expectedtype’int’,got’float’insteadThisinspectiondetectstypeerrorsinfunctioncallexpressions.Duetodynamicdispatchandducktyping,thisispossibleinalimitedbutusefulnumberofcases.TypesoffunctionparameterscanbespecifiedindocstringsorinPython3functionannotations.
另外也有一些库是支持类型检查的,比如 mypy,安装之后,利用 mypy 即可检查出 Python 脚本中不符合类型注解的调用情况。
上面只是用一个简单的 int 类型做了实例,下面我们再看下一些相对复杂的数据结构,例如列表、元组、字典等类型怎么样来声明。
可想而知了,列表用 list 表示,元组用 tuple 表示,字典用 dict 来表示,那么很自然地,在声明的时候我们就很自然地写成这样了:
names:list=[‘Germey’,’Guido’]version:tuple=(3,7,4)operations:dict={‘show’:False,’sort’:True}
这么看上去没有问题,确实声明为了对应的类型,但实际上并不能反映整个列表、元组的结构,比如我们只通过类型注解是不知道 names 里面的元素是什么类型的,只知道 names 是一个列表 list 类型,实际上里面都是字符串 str 类型。我们也不知道 version 这个元组的每一个元素是什么类型的,实际上是 int 类型。但这些信息我们都无从得知。因此说,仅仅凭借 list、tuple 这样的声明是非常“弱”的,我们需要一种更强的类型声明。
这时候我们就需要借助于 typing 模块了,它提供了非常“强“的类型支持,比如 List[str]、Tuple[int, int, int] 则可以表示由 str 类型的元素组成的列表和由 int 类型的元素组成的长度为 3 的元组。所以上文的声明写法可以改写成下面的样子:
fromtypingimportList,Tuple,Dictnames:List[str]=[‘Germey’,’Guido’]version:Tuple[int,int,int]=(3,7,4)operations:Dict[str,bool]={‘show’:False,’sort’:True}
这样一来,变量的类型便可以非常直观地体现出来了。
目前 typing 模块也已经被加入到 Python 标准库中,不需要安装第三方模块,我们就可以直接使用了。
typing
下面我们再来详细看下 typing 模块的具体用法,这里主要会介绍一些常用的注解类型,如 List、Tuple、Dict、Sequence 等等,了解了每个类型的具体使用方法,我们可以得心应手的对任何变量进行声明了。
在引入的时候就直接通过 typing 模块引入就好了,例如:
fromtypingimportList,TupleList
List、列表,是 list 的泛型,基本等同于 list,其后紧跟一个方括号,里面代表了构成这个列表的元素类型,如由数字构成的列表可以声明为:
var:List[intorfloat]=[2,3.5]
另外还可以嵌套声明都是可以的:
var:List[List[int]]=[[1,2],[2,3]]Tuple、NamedTuple
Tuple、元组,是 tuple 的泛型,其后紧跟一个方括号,方括号中按照顺序声明了构成本元组的元素类型,如 Tuple[X, Y] 代表了构成元组的第一个元素是 X 类型,第二个元素是 Y 类型。
比如想声明一个元组,分别代表姓名、年龄、身高,三个数据类型分别为 str、int、float,那么可以这么声明:
person:Tuple[str,int,float]=(‘Mike’,22,1.75)
同样地也可以使用类型嵌套。
NamedTuple,是 collections.namedtuple 的泛型,实际上就和 namedtuple 用法完全一致,但个人其实并不推荐使用 NamedTuple,推荐使用 attrs 这个库来声明一些具有表征意义的类。
Dict、Mapping、MutableMapping
Dict、字典,是 dict 的泛型;Mapping,映射,是 collections.abc.Mapping 的泛型。根据官方文档,Dict 推荐用于注解返回类型,Mapping 推荐用于注解参数。它们的使用方法都是一样的,其后跟一个中括号,中括号内分别声明键名、键值的类型,如:
defsize(rect:Mapping[str,int])->Dict[str,int]:return{‘width’:rect[‘width’] 100,’height’:rect[‘width’] 100}
这里将 Dict 用作了返回值类型注解,将 Mapping 用作了参数类型注解。
MutableMapping 则是 Mapping 对象的子类,在很多库中也经常用 MutableMapping 来代替 Mapping。
Set、AbstractSet
Set、集合,是 set 的泛型;AbstractSet、是 collections.abc.Set 的泛型。根据官方文档,Set 推荐用于注解返回类型,AbstractSet 用于注解参数。它们的使用方法都是一样的,其后跟一个中括号,里面声明集合中元素的类型,如:
defdescribe(s:AbstractSet[int])->Set[int]:returnset(s)
这里将 Set 用作了返回值类型注解,将 AbstractSet 用作了参数类型注解。
Sequence
Sequence,是 collections.abc.Sequence 的泛型,在某些情况下,我们可能并不需要严格区分一个变量或参数到底是列表 list 类型还是元组 tuple 类型,我们可以使用一个更为泛化的类型,叫做 Sequence,其用法类似于 List,如:
defsquare(elements:Sequence[float])->List[float]:return[x**2forxinelements]NoReturn
NoReturn,当一个方法没有返回结果时,为了注解它的返回类型,我们可以将其注解为 NoReturn,例如:
defhello()->NoReturn:print(‘hello’)Any
Any,是一种特殊的类型,它可以代表所有类型,静态类型检查器的所有类型都与 Any 类型兼容,所有的无参数类型注解和返回类型注解的都会默认使用 Any 类型,也就是说,下面两个方法的声明是完全等价的:
defadd(a):returna 1defadd(a:Any)->Any:returna 1
原理类似于 object,所有的类型都是 object 的子类。但如果我们将参数声明为 object 类型,静态参数类型检查便会抛出错误,而 Any 则不会,具体可以参考官方文档的说明:https://docs.python.org/zh-cn/3/library/typing.html?highlight=typing#the-any-type。
TypeVar
TypeVar,我们可以借助它来自定义兼容特定类型的变量,比如有的变量声明为 int、float、None 都是符合要求的,实际就是代表任意的数字或者空内容都可以,其他的类型则不可以,比如列表 list、字典 dict 等等,像这样的情况,我们可以使用 TypeVar 来表示。
例如一个人的身高,便可以使用 int 或 float 或 None 来表示,但不能用 dict 来表示,所以可以这么声明:
height=1.75Height=TypeVar(‘Height’,int,float,None)defget_height()->Height:returnheight
这里我们使用 TypeVar 声明了一个 Height 类型,然后将其用于注解方法的返回结果。
NewType
NewType,我们可以借助于它来声明一些具有特殊含义的类型,例如像 Tuple 的例子一样,我们需要将它表示为 Person,即一个人的含义,但但从表面上声明为 Tuple 并不直观,所以我们可以使用 NewType 为其声明一个类型,如:
Person=NewType(‘Person’,Tuple[str,int,float])person=Person((‘Mike’,22,1.75))
这里实际上 person 就是一个 tuple 类型,我们可以对其像 tuple 一样正常操作。
Callable
Callable,可调用类型,它通常用来注解一个方法,比如我们刚才声明了一个 add 方法,它就是一个 Callable 类型:
print(Callable,type(add),isinstance(add,Callable))
运行结果:
typing.Callable<class’function’>True
在这里虽然二者 add 利用 type 方法得到的结果是 function,但实际上利用 isinstance 方法判断确实是 True。
Callable 在声明的时候需要使用 Callable[[Arg1Type, Arg2Type, …], ReturnType] 这样的类型注解,将参数类型和返回值类型都要注解出来,例如:
defdate(year:int,month:int,day:int)->str:returnf'{year}-{month}-{day}’defget_date_fn()->Callable[[int,int,int],str]:returndate
这里首先声明了一个方法 date,接收三个 int 参数,返回一个 str 结果,get_date_fn 方法返回了这个方法本身,它的返回值类型就可以标记为 Callable,中括号内分别标记了返回的方法的参数类型和返回值类型。
Union
Union,联合类型,Union[X, Y] 代表要么是 X 类型,要么是 Y 类型。
联合类型的联合类型等价于展平后的类型:
Union[Union[int,str],float]==Union[int,str,float]
仅有一个参数的联合类型会坍缩成参数自身,比如:
Union[int]==int
多余的参数会被跳过,比如:
Union[int,str,int]==Union[int,str]
在比较联合类型的时候,参数顺序会被忽略,比如:
Union[int,str]==Union[str,int]
这个在一些方法参数声明的时候比较有用,比如一个方法,要么传一个字符串表示的方法名,要么直接把方法传过来:
defprocess(fn:Union[str,Callable]):ifisinstance(fn,str):#str2fnandprocesspasselifisinstance(fn,Callable):fn()
这样的声明在一些类库方法定义的时候十分常见。
Optional
Optional,意思是说这个参数可以为空或已经声明的类型,即 Optional[X] 等价于 Union[X, None]。
但值得注意的是,这个并不等价于可选参数,当它作为参数类型注解的时候,不代表这个参数可以不传递了,而是说这个参数可以传为 None。
如当一个方法执行结果,如果执行完毕就不返回错误信息, 如果发生问题就返回错误信息,则可以这么声明:
defjudge(result:bool)->Optional[str]:ifresult:return’ErrorOccurred’Generator
如果想代表一个生成器类型,可以使用 Generator,它的声明比较特殊,其后的中括号紧跟着三个参数,分别代表 YieldType、SendType、ReturnType,如:
defecho_round()->Generator[int,float,str]:sent=yield0whilesent>=0:sent=yieldround(sent)return’Done’
在这里 yield 关键字后面紧跟的变量的类型就是 YieldType,yield 返回的结果的类型就是 SendType,最后生成器 return 的内容就是 ReturnType。
当然很多情况下,生成器往往只需要 yield 内容就够了,我们是不需要 SendType 和 ReturnType 的,可以将其设置为空,如:
definfinite_stream(start:int)->Generator[int,None,None]:whileTrue:yieldstartstart =1案例实战
接下来让我们看一个实际的项目,看看经常用到的类型一般是怎么使用的。
这个库的源代码其实就一个文件,那就是 https://github.com/psf/requests-html/blob/master/requests_html.py,我们看一下它里面的一些 typing 的定义和方法定义。
首先 Typing 的定义部分如下:
fromtypingimportSet,Union,List,MutableMapping,Optional_Find=Union[List[‘Element’],’Element’]_XPath=Union[List[str],List[‘Element’],str,’Element’]_Result=Union[List[‘Result’],’Result’]_HTML=Union[str,bytes]_BaseHTML=str_UserAgent=str_DefaultEncoding=str_URL=str_RawHTML=bytes_Encoding=str_LXML=HtmlElement_Text=str_Search=Result_Containing=Union[str,List[str]]_Links=Set[str]_Attrs=MutableMapping_Next=Union[‘HTML’,List[str]]_NextSymbol=List[str]
这里可以看到主要用到的类型有 Set、Union、List、MutableMapping、Optional,这些在上文都已经做了解释,另外这里使用了多次 Union 来声明了一些新的类型,如 _Find 则要么是是 Element 对象的列表,要么是单个 Element 对象,_Result 则要么是 Result 对象的列表,要么是单个 Result 对象。另外 _Attrs 其实就是字典类型,这里用 MutableMapping 来表示了,没有用 Dict,也没有用 Mapping。
接下来再看一个 Element 类的声明:
classElement(BaseParser):”””AnelementofHTML.:paramelement:Theelementfromwhichtobasetheparsingupon.:paramurl:TheURLfromwhichtheHTMLoriginated,usedfor“absolute_links“.:paramdefault_encoding:Whichencodingtodefaultto.”””__slots__=[‘element’,’url’,’skip_anchors’,’default_encoding’,’_encoding’,’_html’,’_lxml’,’_pq’,’_attrs’,’session’]def__init__(self,*,element,url:_URL,default_encoding:_DefaultEncoding=None)->None:super(Element,self).__init__(element=element,url=url,default_encoding=default_encoding)self.element=elementself.tag=element.tagself.lineno=element.sourcelineself._attrs=Nonedef__repr__(self)->str:attrs=[‘{}={}’.format(attr,repr(self.attrs[attr]))forattrinself.attrs]return”<Element{}{}>”.format(repr(self.element.tag),”.join(attrs))@propertydefattrs(self)->_Attrs:”””Returnsadictionaryoftheattributesofthe:class:`Element<Element>`(`learnmore<https://www.w3schools.com/tags/ref_attributes.asp>`_).”””ifself._attrsisNone:self._attrs={k:vfork,vinself.element.items()}#Splitclassandrelup,asthereareussuallymanyofthem:forattrin[‘class’,’rel’]:ifattrinself._attrs:self._attrs[attr]=tuple(self._attrs[attr].split())returnself._attrs
这里 __init__ 方法接收非常多的参数,同时使用 _URL 、_DefaultEncoding 进行了参数类型注解,另外 attrs 方法使用了 _Attrs 进行了返回结果类型注解。
整体看下来,每个参数的类型、返回值都进行了清晰地注解,代码可读性大大提高。
以上便是类型注解和 typing 模块的详细介绍。
近期热门:
用Python给女友 准备个绝对甜蜜的七夕礼物
5天破10亿的哪吒,为啥这么火,Python来分析
零基础学了8个月的Python,到底有啥感悟
学习群:
小密圈人气很高的两个实战项目
3个月还没入门Python,看这100名小密圈的同学3周学Python的杰作