安全加密芯片有哪些加密方式(3分钟了解芯片加密技巧)

本文导读

随着物联网和边缘计算的出现,五花八门的MCU也被应用其中,如何保证我们的程序安全和知识产权不受侵犯呢,本文我们将对主流MCU的程序加密进行讲解,希望能够帮助你选择最适合自己应用的微处理器。

1. MCU加密

通常所说的MCU加密是指将用户的程序固件保护起来,防止别人通过外部调试接口或者其他方法读取烧写在Flash中的程序。保护自家方案不轻易被别家抄袭,从硬件上保护自己的知识产权。MCU加密还指防止自家程序被恶意读取破解。

2. 常用MCU加密方式

通过写特定配置字;

增加外部加密芯片;

对程序代码进行密码加密,使程序变成密文;

程序校验芯片的唯一ID。

2.1 配置字加密

2.1.1 原理

配置字加密在芯片完成上电时序后才会生效,一般包含以下功能:

禁能调试接口(JTAG/SWD);

不禁能调试接口,但不允许调试器连接内核和访问Flash和RAM空间;

关闭读写Flash的ISP指令;

禁止除芯片正常执行程序外读Flash操作;

禁能芯片从外部接口或RAM启动执行代码。

2.1.2 应用场景

这种加密方式通常用在程序存储在芯片内部Flash的系统中。例如NXP LPC系列MCU、GD32系列MCU、NXP Kineits Cortex-M系列。

2.2 外接加密芯片

2.2.1 原理

加密芯片保护程序的方式,是通过程序与外部加密IC的交互来确认程序是否进一步执行。

利用芯片随机数外设或者其他能够产生随机数的机制,在每次上电后系统取得一个随机数,并将这个随机数通过类似IIC的协议传给外部的硬件加密IC。随后系统按先前约定的算法进行结果计算,等待外部IC接收到随机数并也算出结果后,外部IC会将计算结果传回给系统。如果系统的计算结果和外部IC的计算结果相同,则说明外部的加密IC存在。

2.2.2 应用场景

这种加密方式主要用在用户对代码中关键算法的加密,算法通常会以Lib的方式提供,只有购买了对应加密芯片(类似于产品密钥)的客户才能够使用算法程序。

2.3 UID检验加密

2.3.1 原理

UID加密一种用户主动加密的方式。当下几乎所有处理器内部都包含UID,可以通过直接寻址读取或者IAP指令获得。

UID加密通常分为二种方式:

用户在烧写程序时,读取一次芯片UID将其写入Flash特定区域。在程序启动时直接读取UID和Flash内部的数值进行比较决定是否启动;

其中第一种最容易被破解,第二种也存在潜在风险,为了增强第二种的安全性,可以将加密后的数据拆分后分别存放到Flash的不同位置,运行时再组合。

2.3.2 应用场景

主要用在一些不需要太多保护的协议栈上,例如LoRa协议栈、文件系统、私有操作系统等。协议栈相对算法的价值会低一些,增加加密芯片的成本显得过高。

同时这种方式也可延伸为使用PID(每个型号的ID相同)来区分设备型号。

2.4 程序固件加密

2.4.1 原理

2.4.2 应用场景

这种加密方式主要用于芯片没有内部Flash或Flash较小,以及需要给用户升级固件的产品上。例如:

芯片从外部Flash启动时,外部Flash很容易被拷贝,盗版。这种应用通常芯片内部具备OTP区域用于编程密钥;

芯片内部Flash较小时可以将算法等文件放置在外部Flash中,运行时解密到内部RAM执行。密钥通常和内部Flash的程序一同存储;

使用在产品需要后期升级功能算法的项目中,可以在Bootloader中放置解密程序,升级的过程中,Bootloader将收到的固件解密烧写到内部Flash中。这样既可以随意发送产品更新固件,同时不用担心知识产权被侵害。

例如i.MX RT1050系列芯片就是使用程序固件加密,程序被放置在外部Flash中,执行时边解密边执行,对i.MX RT1050系列的加密问题可以联系我们。

3. 常用芯片的加密方式

3.1 NXP LPC系列

CRP是一种允许用户在系统中启用不同级别的安全性的机制,从而可以限制对片上闪存的访问和ISP的使用。当需要时,通过在0x0002FC中闪存位置编程特定模式来调用CRP。IAP命令不受代码读取保护的影响。

以LPC824位例,在启动文件(*.s)中找到CRP Key根据需要进行修改,如图3.1。

安全加密芯片有哪些加密方式(3分钟了解芯片加密技巧)

图3.1 CRP Key示例

注:切记在产品最终固件中才可使用CRP3,否则芯片将被锁死不能再被解锁。

3.2 NXP Kineits Cortex-M系列

Kineits Cortex-M系列的加密同样使用配置字的方式写入Flash特定区域,但它比LPC系列相对复杂一些功能也更加强大。

Kineits Cortex-M系列的加密包含在FlashConfig区域,FlashConfig包含一些用于芯片内部Boot的配置信息,比如使能或禁能NMI引脚中断。

图3.2 FSL的FlashConfig段

使用keil工具可以快速使用UI配置,如图3.3所示:

图3.3 启动文件配置

3.3 GD32系列

GD32系列加密与和STM32系列加密方式类似。GD32内部包含一个FMC外设。FMC提供了一个安全保护功能来阻止非法读取闪存。此功能可以很好地保护软件和固件免受非法的用户操作。

FMC包含一个OB_RDPT字节与其补字节:

当将OB_RDPT字节和它的补字节被设置为0x5AA5,系统复位以后,闪存将处于非安全保护状态;

当设置OB_RDPT字节和它的补字节值为任何除0x5AA5外的值,系统复位以后,安全保护状态生效;

在安全保护状态下,主存储闪存块仅能被用户代码访问且前4KB的闪存自动处于页擦除/编程保护状态下。在调试模式下,或从SRAM中启动时,以及从boot loader区启动时,这些模式下对主存储块的操作都被禁止;

如果将OB_RDPT字节和它的补字节设置为0x5AA5,安全保护功能将失效,并自动触发一次整片擦除操作。

GD官方提供加密工具GigaDevice_MCU_ISP_Programmer或者使用FlyMCU等工具,操作界面如图3.4所示:

图3.4 GD32使用FlyMCU加密

3.4 i.MX RT系列

i.MX RT系列是NXP公司发布的跨界处理器,MPU的处理性能、MCU的开发方式。该系列不包含用户可用的内部Flash,所有代码都要存储在外部存储介质中。它使用FSL独有的HAB安全机制,能够达到比前面更安全的加密机制。

i.MX RT的加密是将程序固件完全通过工具转换为密文,不能够被反编译,同时i.MX RT内部包含OTP区域,用于编程密钥信息和启动信息,加密后不可读取。

芯片使用QSPI或HypeFlash时,可以实现边运行边解密,不占用额外的RAM空间,同时硬件解密配合内核中32KB ICache和32KB DCache使得程序运行不会受到固件加密的影响;

芯片还支持Boot时完全解密程序到内部RAM或外部SDRAM,这种方式代码的启动速度略微变慢,但是能够支持更多的启动方式:SD卡、MMC、Nand Flash等。

NXP提供加密工具CSF和密钥烧写工具FlashLoader,用于程序固件的加密和烧写。如有任何疑问可联系我们的FAE获得支持。

往期推荐

AWorks硬件篇 — M3352(A8核) 系列核心板

MCU BLE:助力数据腾飞

AWorks硬件篇 — A280核心板(ARM9核)和AW6748核心板(DSP核)

CAN FD巡回研讨会年度盛宴,看一看都有哪些大咖出席?

AWorks硬件篇 — M28x-T(ARM9核) 和 M6G2C(A7核) 系列核心板

周立功:M105x无线核心板(M7核)

周立功:AWorks简介

AWorks的哲学思想

随心所欲磁旋钮

发表评论

登录后才能评论