请问无线传感网的定位原理是什么?和GPS有什么不同?
无线传感器网路(WNS)被誉为21世纪最有影响力的21项技术和改变世界的l0大技术之一,无论在民用领域还是军用领域均有巨大的应用前景。无线传感器节点通常随机布放在不同的环境中执行各种监测和跟踪任务,以自组织的方式相互协调工作,最常见的例子是用飞机将传感器节点布放在指定的区域中,随机布防的传感器节点无法事先知道自己位置,传感器节点必须能够实时地进行定位。因此位置信息对传感器网络的监测活动至关重要,事件发生的位置或获取信息的节点位置是传感器节点监测消息中所包含的重要信息,对于大多数应用而言,在不知道具体位置信息的监测消息往往是毫不意义的。传感器节点必须先明确自身位置才能够详细说明“在什么区域或位置发生了特定事件”,来实现对外部目标的定位、追踪和覆盖。因此,确定事件的发生的位置或获取信息的节点位置是传感器网络最基本的功能之一,对传感器网络应用的有效性起着关键的作用
在无线传感器网络的各研究分支中,定位技术是无线传感器网络中关键的支
撑技术之一。首先,在无线传感器网络的各种应用中,节点的感知数据必须与位置相结合,离开位置信息,感知数据是没有意义的,如环境监测、抢险救灾、森林火灾监控等,没有地理位置信息就无法确定事件发生何处,也不能够采取有效及时的处理措施。其次,使用传感器节点的位置信息能够提高路由效率,节约能耗,增强网络安全性及实现网络拓扑的自配置等。然而,传感器网络规模通常比较大,给网络中所有节点均安装GPS收发器或者人工配置节点位置会受到成本、能耗、效率等问题的限制,甚至在某些场合可能无法实现。因此必须开展适合无线传感器网络特点的定位技术研究。基于上述原因,定位技术在无线传感器网络的理论研究和应用中具有重要的意义,已经成为了无线传感网络技术中的一个研究热点。
无线传感网定位技术
在定位领域中,无线传感网络的节点可以分为两类:一类是己知自身坐 标的节点,被称为信标节点或销节点,该节点通常是通过GPS或人工部署的 方式得到节点坐标的;另一类是位置坐标节点,被称为未知节点(UnknownNode),该类节点则是需要我们通过周围的描节点所提供的信息来估算出自身节点的坐标信息。
根据未知节点定位过程中是否需要周围描节点提供距离信息,可以将定位算法具体分为两大类:一类是需要测距的定位算法,即需要错节点提供与 未知节点间的距离信息;另一类是无需测距的定位算法,即不需要锚节点提供测距信息,仅通过角度或数据传输经过的跳数等信息则可以完成定位的算法。
一般来说,基于测距的定位算法利用三边测量法、三角测量法或极大似然估计法来计算节点的位置,常用的测距技术有RSSI,TOA,TDOA和AOA。RSSI定位技术具有功耗低和硬件成本低的优势,但也存在多路径损耗等问题影响从而存在一定的误差。TOA(根据到达时间定位)需要节点间有较为精确的节点时间同步机制,对于硬件设备要求比较高,并且对网络结构较为不均勾的网络来说更加难于实现。TDOA根据到达时间差定位技术,需要利用超声波信号传播对于到达时间的准确测量来定位,但超声波距离有限并且有障碍物等环境问题对超声波的传播有一定的影响;AOA(根据信号到达角度定位技术)受外界环境干扰严重,并且需要额外的硬件来计算信号到达时的角度。
基于测距的定位算法比较精确,但需要节点本身通信频率较高,从而节点能耗幵销较大。无需测距的定位算法则无需通信频率较快,提高了定位能耗,但是却牺牲了一定的定位精度。虽然定位精度降低了,但其在实际应用中仍然具有许多典型案例。目前常用的无需测距的定位算法有质心算法,DV-Hop算法,APIT定位算法。质心算法的原理是通过获取网络中节点间的连通关系来佔算连通节点问的距离,从而进一步利用连通节点组成的儿何图形质心来估算H标节点坐标。DV-Hop算法能够通过多跳传输获取到目标节点无线覆盖范围之外的信标节点的数据,从而获取到更多的有用信息。APIT定位算法是将错节点的区域划分成一个个三角形区域,通过判断未知节点位于哪些三角形区域内,进一步缩小定位范围。利用描节点本身的坐标即可进一步得出目标点的位置。
GPS原理
GPS的空间部分是由24颗GPS工作卫星所组成,这些GPS工作卫星共同组成了GPS卫星星座,其中21颗为可用于导航的卫星,3颗为活动的备用卫星。这24颗卫星分布在6个倾角为55°的轨道上绕地球运行。卫星的运行周期约为12恒星时。每颗GPS工作卫星都发出用于导航定位的信号。GPS用户正是利用这些信号来进行工作的。
控制部分
GPS的控制部分由分布在全球的由若干个跟踪站所组成的监控系统所构成,根据其作用的不同,这些跟踪站又被分为主控站、监控站和注入站。主控站有一个,位于美国克罗拉多(Colorado)的法尔孔(Falcon)空军基地,它的作用是根据各监控站对GPS的观测数据,计算出卫星的星历和卫星钟的改正参数等,并将这些数据通过注入站注入到卫星中去;同时,它还对卫星进行控制,向卫星发布指令,当工作卫星出现故障时,调度备用卫星,替代失效的工作卫星工作;另外,主控站也具有监控站的功能。监控站有五个,除了主控站外,其它四个分别位于夏威夷(Hawaii)、阿松森群岛(Ascension)、迭哥伽西亚(Diego Garcia)、卡瓦加兰(Kwajalein),监控站的作用是接收卫星信号,监测卫星的工作状态;注入站有三个,它们分别位于阿松森群岛(Ascension)、迭哥伽西亚(Diego Garcia)、卡瓦加兰(Kwajalein),注入站的作用是将主控站计算出的卫星星历和卫星钟的改正数等注入到卫星中去。
用户部分(地面接收)
GPS的用户部分由GPS接收机、数据处理软件及相应的用户设备如计算机气象仪器等所组成。它的作用是接收GPS卫星所发出的信号,利用这些信号进行导航定位等工作。 以上这三个部分共同组成了一个完整的GPS系统。
原理二
GPS的信号
GPS卫星发射两种频率的载波信号,即频率为1575.42MHz的L1载波和频率为1227.60MHz的L2载波,它们的频率分别是基本频率10.23MHz的154倍和120倍,它们的波长分别为19.03cm和24.42cm。在L1和L2上又分别调制着多种信号,这些信号主要有:
C/A码
C/A码又被称为粗捕获码,它被调制在L1载波上,是1MHz的伪随机噪声码(PRN码),其码长为1023位(周期为1ms)。由于每颗卫星的C/A码都不一样,因此,我们经常用它们的PRN号来区分它们。C/A码是普通用户用以测定测站到卫星间的距离的一种主要的信号。
P码
P码又被称为精码,它被调制在L1和L2载波上,是10MHz的伪随机噪声码,其周期为七天。在实施AS时,P码与W码进行模二相加生成保密的Y码,此时,一般用户无法利用P码来进行导航定位。
Y码
见P码。
导航信息
导航信息被调制在L1载波上,其信号频率为50Hz,包含有GPS卫星的轨道参数、卫星钟改正数和其它一些系统参数。用户一般需要利用此导航信息来计算某一时刻GPS卫星在地球轨道上的位置,导航信息也被称为广播星历。
SPS和PPS是GPS系统针对不同用户提供两种不同类型的服务。一种是标准定位服务(SPSStandard Positioning Service),另一种是精密定位服务(PPSPrecision Positioning Service)。这两种不同类型的服务分别由两种不同的子系统提供,标准定位服务由标准定位子系统(SPSStandard Positioning System)提供,精密定位服务则由精密定位子系统(PPSPrecision Positioning System)提供。
SPS主要面向全世界的民用用户。
PPS主要面向美国及其盟国的军事部门以及民用的特许用户。
在GPS定位中,经常采用下列观测值中的一种或几种进行数据处理,以确定出待定点的坐标或待定点之间的基线向量:
L1载波相位观测值
L2载波相位观测值(半波或全波)
调制在L1上的C/A码伪距
调制在L1上的P码伪距
调制在L2上的P码伪距
L1上的多普勒频移
L2上的多普勒频移
实际上,在进行GPS定位时,除了大量地使用上面的观测值进行数据处理以外,还经常使用由上面的观测值通过某些组合而形成的一些特殊观测值,如宽巷观测值(Wide-Lane)、窄巷观测值(Narrow-Lane)、消除电离层延迟的观测值(Ion-Free)来进行数据处理。
原理三
GPS的误差
我们在利用GPS进行定位时,会受到各种各样因素的影响。影响GPS定位精度的因素可分为以下四大类:
人为
美国政府从其国家利益出发,通过降低广播星历精度( 技术)、在GPS基准信号中加入高频抖动( 技术)等方法,人为降低普通用户利用GPS进行导航定位时的精度。
卫星星历误差
在进行GPS定位时,计算在某时刻GPS卫星位置所需的卫星轨道参数是通过各种类型的星历[7]提供的,但不论采用哪种类型的星历,所计算出的卫星位置都会与其真实位置有所差异,这就是所谓的星历误差。
卫星钟差
卫星钟差是GPS卫星上所安装的原子钟的钟面时与GPS标准时间之间的误差。
卫星信号发射天线相位中心偏差
卫星信号发射天线相位中心偏差是GPS卫星上信号发射天线的标称相位中心与其真实相位中心之间的差异。